If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-6x=142
We move all terms to the left:
7x^2-6x-(142)=0
a = 7; b = -6; c = -142;
Δ = b2-4ac
Δ = -62-4·7·(-142)
Δ = 4012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4012}=\sqrt{4*1003}=\sqrt{4}*\sqrt{1003}=2\sqrt{1003}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{1003}}{2*7}=\frac{6-2\sqrt{1003}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{1003}}{2*7}=\frac{6+2\sqrt{1003}}{14} $
| 5u^2-10u+51=6 | | 1-6x+6x=-6 | | 6n=3-2n+5 | | Y-8=-0.01(x-1) | | x/18=40 | | 26=(0.175x)+x | | 3t11t+6=0 | | .35x=28 | | z-2/3=1/6 | | 3v+9v=8 | | X=150x450 | | E=150x450 | | 20=14x-10 | | 30=-8(x-1)-3× | | 14x-21=14x-21 | | (2/3)x+1=0 | | 3x-4=18-3+5x | | (0.72)(5x)-x=8.25 | | P=12+5d/8 | | 3/4k+1=12 | | 8(m=3)=56 | | 22=2(×-9)-x | | 35-7x=-8(x-4) | | 5(u+2)=10 | | 2x+x-5+6=90 | | x/6+13=x/8 | | 6(-3-z)-2z=14 | | 4x-7=11x | | r=(1/12)*84=7 | | (x-4)(x+3)=36 | | -4(x+3)-44=2-30 | | 27=2.25x |